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Effects of externally imposed periodic changes in the environment on population dynamics are studied with
the help of a simple model. The environmental changes are represented by the temporal and spatial dependence
of the competition terms in a standard equation of evolution. Possible applications of the analysis are on the
one hand to bacteria in Petri dishes and on the other to rodents in the context of the spread of the Hantavirus
epidemic. The analysis shows that spatiotemporal structures emerge, with interesting features which depend on
the interplay of separately controllable aspects of the externally imposed environmental changes.
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I. INTRODUCTION

The mathematical study of population dynamics has been
a subject of great interest in recent years, with application
widely spread among different fields. An example is the de-
scription of emerging patterns in bacterial colonies[1–8].
Other studies describe the behavior of the populations of
superior organisms such as insects and rodents[9–12].

If, in basic models for the description of the evolution of
a given population, we focus attention on reproduction, com-
petition for resources, and diffusion, the Fisher equation
[12,13] appears to be a useful mathematical tool:

]usx,td
]t

= D
]2usx,td

]x2 + ausx,td − bu2sx,td. s1d

Diffusion with coefficientD is considered here as well as the
growth of the population at ratea and a competition process
weighted byb, also containing environmental features. In the
present paper, we consider effects of spatiotemporal dynam-
ics in the nonlinear term as a representation of externally
imposed or seasonal environmental variations. We thus take
b in Eq. (1) to be space and time dependent,bsx,td. Environ-
mental variations could alternatively be considered as affect-
ing a (such thata is dependent on time and space rather than
b) as has been done in some earlier studies[3,4,8]. However,
we restrict our attention to a constanta and varyingbsx,td.
This allows us to define, in a straightforward manner, two
characteristic quantities, a Fisher velocity and a Fisher length
in terms of a constanta. Following Ref. [8] we consider a
bounded region which will be referred to as abubble of
favorable conditions suitable for the survival of a given spe-
cies. Outside of this region the environmental conditions are
so harsh that there is little or no possibility of survival.

Associated with the Fisher equation[13] there is a natural
velocity and a natural length, 2ÎDa and pÎD /a, respec-
tively. The former is known as the Fisher velocity and is the
velocity at which fronts tend to travel after adjustments from
most initial conditions[12]. Thus an arbitrary shape of the
initial population with compact support will have fronts that
move, after initial transients, with the Fisher velocity. It is an
important quantity in experiments on bacteria with moving

masks[3,4] as it represents the minimum mask velocity at
which bacteria tend to extinction, rather than being able to
follow the bubble through the combined effect of growth and
diffusion. The Fisher lengthpÎD /a arises[8,14] in the bac-
terial context as the minimum length of the mask below
which the steady-state population of the bacteria vanishes as
the bacteria diffuse out of the masked area quicker than they
can grow to any finite saturation value. The Fisher length is
thus the “diffusion length” within the growth time(reciprocal
of the growth ratea).

Consideration of these two quantities suggests that it is
natural to envisage two observations involving externally im-
posed periodic variation of the environment. The first is one
in which experiments of the kind reported in Refs.[3,4] are
carried out with the velocity varying periodically, in other
words with the bubble repeatedly returning to its original
position. This is theoscillating bubble case. The second ex-
periment is one in which the bubble extent is made to vary
from a large size to one below the Fisher length(i.e., the
extinction size). The objective of the latter(breathing
bubble) experiment is to analyze extinction tendencies under
periodic variations of the bubble size. We analyze these two
hypothetical experiments in this paper through numerical
calculations based on a Crank-Nicholson scheme.

The present theoretical investigation has been motivated
by two quite different experimental situations: on the one
hand by a series of observations in the context of mice popu-
lation dynamics of the Hantavirus[15], and, on the other, by
an easily realizable modification of experiments[3,4] in the
context of bacteria in a Petri dish. The population of rodents
on mountain slopes involved in the spread of the Hantavirus
epidemic undergoes spatiotemporal changes with change of
seasons[15]. The habitable zone of the rodents moves peri-
odically in time as a direct consequence of the seasonal
variation of the environment. In the bacterial context, the
externally imposed variation is provided simply by moving a
mask over a Petri dish through attachment to an electric mo-
tor. In experiments reported thus far[3,4] the mask is moved
unidirectionally at a constant velocity. In easily realizable
modifications of the experiment that we suggest in the light
of our present investigation, the mask would be made to
move periodically. The vastly different realizations of peri-
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odically varying externally imposed environmental effects on
population dynamics, for rodents and bacteria respectively,
are thus addressed by the single idealization treated in the
following formalism.

II. TRAVELING BUBBLE

Solutions of the Fisher equation for bounded domains,
corresponding to static bubbles, have been already discussed
in Ref. [8] and references therein. A natural change, to be
considered as a first approximation to the problem addressed
here, is to allow a translation in the bubble. We have per-
formed a brief analysis of situations where the velocity is
constant and the system’s behavior corresponds to that of a
moving front, as well as others where the velocity of the
bubble changes continuously. For the former case, and as
mentioned in Ref.[12], we recover a critical velocity beyond
which the front will no longer survive; see bold curve of Fig.
1. As b→` at the boundaries of the bubble, the curves will
abruptly go to zero, rather than asymptotically as above. The
analysis of this situation can be done by making a change of
variables on Eq.(1). If we setj=x−ct we obtain the follow-
ing equation which is valid in the moving frame accompa-
nying the bubble:

D
]2usjd

]j2 + ausjd − bu2sjd + c
]usjd

]j
= 0. s2d

By measuring the maximum population densityumax of
the front solution or the steady solution in a moving frame,
we obtain a curve that will be useful in interpreting the fol-
lowing results. As the bubble accelerates in the moving
frame, the system is not allowed to relax into a steady state;
see the accelerating curve of Fig. 1. The time involved in the
changes induced by the acceleration of the bubble compete
with the relaxation time of the system. We will leave these
results for now and recall them later to understand the fol-
lowing analysis.

III. OSCILLATING BUBBLE

Here, the habitable bubble of fixed width oscillates as a
whole. We study two cases: sinusoidal velocity, and a veloc-

ity which is constant but suddenly changes direction at a
given distance away from the original position. All points
within the amplitude of oscillation will thus be covered pe-
riodically for varying amounts of time. For the purpose of
comparison, we will consider the velocity to be an average
velocity for the sinusoidal case. The parameters involved are
the average velocity of the bubblev, the amplitude of oscil-
lation characterized by the distance between the center of the
bubble at the turning pointsA, the length of the bubble,W,
and the Fisher parameters: the diffusion coefficientD, the
growth ratea, and the competition termbsx,td. For the fol-
lowing analysis,bsx,td is a step function that defines the
shape of the bubble. We have examined the following as-
pects of Eq.(1):

(i) The role of each of the three parameters,v, A, andW,
in the dynamics of the population.

(ii ) How the two cases(sinusoidal velocity and constant
velocity) differ from each other.

(iii ) Qualitative characteristics and comparisons between
solutions for various parameter sets.

(iv) The evolution of the population as diffusion goes to
zero.

(v) The appearance of a curious dipping phenomenon.

A. Numerical results for D.0

It is helpful to divide the behavior into two regimes which
correspond to no extinction and extinction. The parameters
A, W, and the critical bubble width,Wc=pÎ sD /ad [8,14],
are sufficient to define these regimes. In the steady state,
bubble widths smaller than the critical value are unable to
support a population density. This feature now manifests it-
self in the amount of overlap between the two extremes of an
oscillating bubble. ForA,W there will be an area that is
permanently covered by the bubble. When this covered area,
from now on referred to as theoverlap, is greater than the
critical width, the population will always survive to some
degree. This regime is bounded by 0,A, sW−Wcd.

In the other regime, extinction may occur when there is an
overlap that is less than the critical value,sW−Wcd,A. The
distance between the inner edges of the bubble whenA.W
will be called theseparationsA−Wd. Naturally, when there
is a separation, no single location will receive continuous
coverage by the bubble.

For either regime, if the velocity is below the Fisher ve-
locity, v f, the population will be able to follow the oscillating
bubble. As the velocity increases it becomes more difficult
for the population density to keep up with the moving bubble
(via diffusion and new growth). Some of the population falls
prey to the harsh environment which quickly reduces the
density. Ifbsx,td is infinite for uxu.W/2, the exposed popu-
lation will go extinct, never to return. One might base the
analysis on a representation of the adverse conditions outside
the protection provided by the mask by takingb to be infinite
outside the bubble. However, this would neither be realistic
nor possible in a numerical computation. Therefore we have
consideredb outside the bubble to be a large but finite num-
ber. Most of the phenomena analyzed in this paper appear as
transients which are both realistic and interesting but would

FIG. 1. The bold curve depictsumax as the bubble moves adia-
batically; acceleration is effectively zero. The remaining curve dis-
playsumax for a bubble accelerating linearly at 0.1a2Wc.
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disappear ifb were taken truly infinite. Outside the bubble,
the population decreases sharply. Finiteness of the assumed
value ofb means, however, that it never becomes extinct. In
order to discuss extinction, a phenomenon that does occur in
observations, we have made thead hocassumption that the
population loses the ability to regenerate once it drops below
the threshold value ofa/b outside of the bubble. The idea is
to consider arriving at this minimum(threshold) value of the
population as effectively extinction for populations com-
prised of discrete entities. The value we have chosen forb
outside of the mask, in our case 105 in the units used, intro-
duces a characteristic time of decay, numerically measured,
of the order ofa. Due to the extended amount of time that
either end of the bubble’s trajectory is sheltered, peaks of
increased population density form at these extremes. As the
velocity is increased, these peaks become more pronounced
with respect to the maximum population density in the center
of the bubble’s trajectory. They also come more frequently
since the bubble traverses the same period of oscillation
more often; see Figs. 2 and 3. The entire density profile
oscillates spatiotemporally as the velocity increases and var-
ies with the amount of overlap or separation.

For the zero extinction regime, high velocities effectively
wash out the oscillatory behavior and the peaks merge so that

the length of permanent overlap then determines the popula-
tion density. The behavior of the population in the extinction
regime, sW−Wcd,A, is the same except for one crucial
characteristic. Again, the peaks at the endpoints come closer
together for higher velocities, but they never merge. The
population dies out before a constant density forms in the
center. AsA increases, extinction occurs for smaller and
smaller velocities.

In the discussion above anaveragevelocity of the bubble
was assumed. We now make a distinction between two types
of velocities and their relative affects on the population den-
sity. A bubble moving with sinusoidal velocity lingers for
longer time over the end points of its trajectory and for
shorter time in the center as compared to the constant veloc-
ity bubble. For a single location, a larger population density
is permitted to grow if more time is spent under the bubble.
The basic qualitative differences of the population density
thus follow from these two aspects. Though the two veloci-
ties produce the same essential behavior, we find that there
indeed exists a difference between the two after long times.
This will be addressed in the final section.

To further understand the structural changes of the popu-
lation, we have examined the maximum population density
as it oscillates parametrically in time. The shape that is out-
lined can be roughly characterized by abowtie, Fig. 3. The
densities of the maxima, minima, center, and the spatial ex-
tremes are the four features that comprise the qualitative dif-
ferences between bowtie morphologies. As the average ve-
locity increases these four points of comparison within the
bowtie undergo changes in proportion. The maxima of the
bowtie move closer to the center(recall that in the no-
extinction regime these maxima eventually merge). The
minima move farther from the center. The spatial spread of
the bowtie is smaller and the overall values of the population
density decrease for all positions. The difference between the
maxima and minima of the bowtie,Ab (the amplitude of
oscillation of the maximum population density) initially in-
creases and then decreases as velocity increases. Figure 4
depicts the abrupt appearance and then gradual decay of the

FIG. 2. Temporal evolution ofumax where in (a) A=8Wc, (b)
A=10Wc, andW=10Wc in both. Each curve is characterized by one
of seven sinusoidal bubble velocities, 0.1aWc, 1aWc, 3aWc, 5aWc,
7aWc, and 10aWc where v f =aWc when D=aWc

2, as in the plots
above. Higher velocities induce lower maximum population density
values and thus drive a population closer to extinction as the am-
plitude of oscillation increases.

FIG. 3. A variety of bowties exhibit the affects for different
values of v when a bubble ofA=8Wc, W=10Wc, and D=aWc

2

moves with sinusoidal velocity. Velocities from top to bottom range
from aWc to 10aWc and increment by 0.5aWc where v f =aWc

whenD=aWc
2. The trajectories are parametric in time such thatumax

is increasing at the end points.
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bowtie as a function of velocity. The bowtie appears in both
nondiffusive systems and diffusive systems. Bowties of the
former develop amplitudes larger than those of the latter.
Also, bowties are formed at lower velocities for the nondif-
fusive than for the diffusive system.

B. Analytic results for D=0

We begin by considering the Fisher equation where the
oscillation of the bubble is explicitly built into the argument
of the competition parameterbsx,td of Eq. (1),

]usz,td
]t

= ausz,td − bSz+E
0

t

vssddsDusz,td2 + D
]2usz,td

]z2 .

The transformationf=1/u yields an equation of the form

]fsz,td
]t

+ afsz,td = bSz+E
0

t

vssddsD + DF ]2fsz,td
]z2

−
2

f
S ]f

]z
D2G . s3d

By allowing D=0, we recover the equation for ahighly
damped linear oscillatorthat is driven by an external force
proportional tobfz+e0

t vssddsg. The population will thus fol-
low the periodic forcing function with a lag. This oscillator
interpretation clarifies the structure of the bowtie. Each loca-
tion grows periodically, with a temporal lag, at the behest of
the driving term. The locations at the edges of the bubble’s
spatial trajectory will have higher population densities be-
cause the driving oscillator lingers for longer time at a lower
value (less harsh conditions).

The solution, forD=0, as derived in Ref.[16], was found
to be

fsx,td = e−atf0Sx −E
0

t

vssddsD
+E

0

t

e−ast−t8dbSx −E
0

t8
vssddsDdt8 s4d

and thususx,td explicitly as

usx,td =

u0Fx −E
0

t

vssddsG
e−at + u0Fx −E

0

t

vssddsGE
0

t

e−ast−t8dbFx −E
0

t8
vssddsGdt8

. s5d

As the bubble’s velocity greatly surpasses the Fisher veloc-
ity, the effect of diffusion becomes negligible. The diffusion
length per time competes with the velocity of the bubble.
Diffusion is thus limited by the time a single location is
covered by the bubble and has little effect when velocity is
high. A solution thus exists in the high velocity limit; refer to
Fig. 4.

When the velocity is relatively low,v,v f, population mi-
gration occurs via diffusion and new growth. By lettingD
→0 (correspondingly,v f →0 and critical overlap→0) one
might conclude that a population cannot maintain itself un-
less there is a bit of overlap. This is true when the velocity is
such that growth cannot occur within the short period of
coverage by the bubble. However, when these two rates
(bubble velocity andaW) are comparable, oscillations in the

population density again arise in the diffusionless case. The
bowties in these circumstances vaguely resemble those of
before. WhenA,W the maximum population density is al-
ways saturated; there are no means by which to leave a shel-
tered region without diffusion. WhenA.W, the bowtie lim-
its to a U shape.

IV. BREATHING BUBBLE

The breathing bubble corresponds to a situation when the
width of a anchored bubble varies in time. As before, we
consider several cases and for each of them a family of val-
ues for the involved parameters. These parameters are the
velocity of the variation of the width, the mean width of the
bubble, the amplitude of the breath, and again, the Fisher

FIG. 4. The amplitude of the bowtie is plotted against the aver-
age velocity(which here varies sinusoidally). The inset shows the
averageumax after long time. The combination of the both show the
validity of the analytic solution in the high velocity regime when
the curves forD=aWc

2 andD=0 converge.
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parameters of Eq.(1). We are interested in analyzing the
relationship between the existence of critical values and the
response of the population density to a changing environ-
ment. We first take the case when the bubble width oscillates
at a constant speed but always preserves a size above the
critical one. The interesting aspect of this situation occurs at
the boundaries of the bubble where population fronts are
formed. The fronts can follow the movement of the bubble
when the velocity of the breathing motion is under a critical
value. Above this critical value, the population is confined to
the minimum size of the bubble, which indicates that the
population front can no longer follow the changes of the

bubble. To show this we display in Fig. 5 the relative ampli-
tude of the oscillation of the population front,Af /A vs the
speed of the bubble breath, whereA is the amplitude of
breathing.

We observe that at a critical value this amplitude goes to
zero. That is, in spite of the changing size of the bubble, the
population density remains bounded statically.

Instead of a constant value for the velocity of breathing,
we can take a fixed frequency for a sinusoidal behavior. The
frequency is associated with the breathing motion of the
bubble boundaries. The results are analogous to those dis-
played in Fig. 5. No qualitative differences were found.

FIG. 5. Amplitude of the front oscillations for several velocities
of the bubble whereD=aWc

2.

FIG. 6. Amplitude of the front oscillations for several values of
the inverse of the frequency of breathing of the bubble whereD
=aWc

2.

FIG. 7. Maximum value adopted by the population as a function of the instantaneous width of the bubble. The velocity of breathing is:
(a) 0.1aWc, (b) 1aWc, (c) 10aWc, (d) 40aWc, andD=aWc

2.
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When the minimum size attained by the bubble during the
breathing is under the critical size, the situation is different.
It is not enough to plot, as in previous examples, the ampli-
tude of the oscillation of the front because some variations in
the maximum density of the population are also observed. To
visually understand what is happening we again plot the tem-
poral behavior of maximum value of the population,umax, as
a function of the momentary width of the breathing bubble.
This is what is shown in Fig. 7, where the trajectories are
traversed clockwise. As observed in the plots, if the velocity
is low enough, the size of the bubble will be under the criti-
cal size long enough to provoke the extinction of the popu-
lation. On the contrary, for higher values of the velocity there
is a range of values at which the population can survive. The
response of the population to changes is much slower than
the dynamics of the environment. Each of the results ob-
tained in this case are essentially the same as the correspond-
ing results from the oscillating bubble. In particular, the re-
sults displayed in Figs. 5 and 6 can be associated with the
discussion included in the previous section, those included in
Fig. 7 are analogous to the bowtie effect.

V. CONCLUSIONS

In the present work, we have numerically studied the be-
havior of a population whose dynamics are described by a
modified Fisher equation with additional environmental
variations. Analytic solutions were also considered for sim-
plified examples. The results presented here show that be-
sides the expected behavior some surprising features arise.
There exist two main parameters that characterize the evolu-
tion of a given population: the Fisher length and Fisher ve-
locity. A given group of individuals will not survive if the
habitat size is smaller than the Fisher length. At the same
time, the population will not be able to maintain saturation
when the habitat moves with a velocity higher than the
Fisher velocity. With these two considerations we have ex-
amined two types of periodically varying environments.
Though extinction of the population was verified in condi-
tions corresponding to the two situations mentioned above, it
was also found that some nontrivial scenarios can also arise.
Situations in which extinction was expected exhibited what
we called the bowtie effect. An interplay between the time
associated to the transient towards extinction and the periods
of the changing environments is the cause of unexpected
behavior of the population. We have also verified that there is
a correspondence between the results obtained when consid-
ering oscillatory or breathing bubbles, though the situations
are different.

For completeness, the case when the temporal variation of
the external conditions is included in the linear term was also
analyzed. Two cases were considered, the first one associated
with very harsh conditions outside the bubble, leading to
extinction, and the second one corresponding to an environ-

ment turning more hostile, yet still habitable. The coefficient
a takes negative values in the first case and positive but small
sa!1d in the second situation. We have found results analo-
gous to the previous ones provided that the relaxation time to
extinction is of the order of the corresponding relaxation
times in the cases presented in Secs. II–IV[17–21]. Values
greater than −1 warrant this condition. All the phenomena
reported in this paper for changingb were also obtained by
keepingb constant and varyinga.

A diffusionless approximation helped us to understand the
origin of the observed phenomena in terms of oscillating
perturbations. Finally, it should be mentioned that a curious
effect arises the presence of constant bubble velocity and
diffusion. Probing longer times reveals an overlying oscilla-
tion in the population density profile. For diffusive systems,
D.0, and constant velocities, the entire bowtie dips down
and then back up again in a periodic manner with constant
amplitude. For different velocities the bowtie dips and rises
with different periods and amplitudes; see Fig. 8. As velocity
increases, the frequency nor the amplitude of the alternative
dip do not necessarily vary accordingly. Sinusoidal velocities
do not produce this effect. Further analysis is necessary to
completely understand the origin of this behavior and its
relation to the two required conditions, diffusion and con-
stant bubble velocity.
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FIG. 8. After long times a periodic dip in all values ofumax is
observed for constant velocities. The sampling above(A, B, C, D,
and E) corresponds to velocities(3.5aW, 4.5aW, 5.5aW, 6.5aW,
and 8.5aW, respectively) wherev f =aW becauseD=aWc

2.
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